Welcome Back

Blog Post

The future of plastic

We are all wondering what the future of single use plastics might be.  Here are some interesting articles to read.  Please follow the links to the original articles.

______________________________

Nature Communications

“Plastic, a highly useful and convenient material, is also one of the world’s greatest environmental problems, yet both industry and society are still heavily reliant on its usage. On World Environment Day, Nature Communications asks: will biodegradable polymers alleviate plastic’s environmental impact?

From initial conception, plastic was hailed a wondrous material. Following 80 years of innovation involving disciplines spread across industry and academia, mass production of plastic became successful and revolutionised consumerism in a post-World War II generation1. Plastic, although a simple synthetic polymer consisting of small molecules (monomers) linked together in a repetitive formation, is extremely versatile; with properties ranging from, resistance to corrosion, light weight, high strength, transparency, low toxicity to durability. Used by almost every industry in the world, from food packaging to space exploration, plastic is the ultimate commodity of convenience. Household names in the plastic industry include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC).

Although the ease of plastic production generates cheap goods, the linear plastic economy adopted sees 90% of products used once and then discarded, thus creating a global environmental crisis. Since the plastic revolution, 6.3 billion tonnes of plastic waste has been produced worldwide2. We store roughly 79% of plastic waste in landfills, which results in up to 2.41 million tonnes of plastic waste entering oceans via rivers every year3,4. Durability, one of plastic’s greatest assets is now its curse–its robustness means that plastics stay in our environment for hundreds of years. Even when degraded, plastic never truly leaves the environment but is present as smaller pieces invisible to the naked eye (microplastics) that are choking marine life and propagating up the food chain5. Alongside a solution to the existing plastic waste problem, a new plastic future is also required.

Reduce, reuse and recycle have been embraced as the common approach to combat the escalating plastic waste problem. The dream is to create a circular plastic economy where products are 100% recyclable, used for as long as possible, and their waste is minimised3,6. Until recently this strategy has lacked success, but with an increasing number of new initiatives, support from governments and leading manufacturers committing to achievable targets, change is being accomplished6. For now, progress remains slow despite advances in molecular level recycling, which enables different plastics to be recycled together7,8. Recycling is costly, reliant on human behavioural changes and produces lower quality materials, in terms of both thermal and mechanical properties7. Additionally, recycling does not curb our plastic addiction; if we want to maintain our current lifestyles modification to plastic manufacture needs to go hand in hand with effective recycling.

Recent success in reducing carrier bag (PE) and drinks bottles (PET) waste in Europe suggests lifestyle adjustments are possible, but plastic is ingrained in modern society and a future free from plastic seems unlikely. Complete alteration of human behaviour is difficult to attain, as indicated by the fact that only 9% of plastic waste is recycled3. Therefore in addition to these three solutions to the plastic waste problem (reducing, reusing and recycling), we need a fundamental change in order to make a noticeable impact on the plastic waste seeping into our environment. A new plastic future in which biodegradable polymers replace conventional plastics could be the answer.

Biodegradable polymers can break down into smaller molecules, such as CO2, CH4 and H2O, by microorganisms under aerobic or anaerobic conditions. Although not always required, abiotic chemical reactions like photodegradation, oxidation and hydrolysis can also aid the degradation process9. There are many examples of biodegradable polymers, some are produced from plants, animals or micro-organisms, others are purely synthetic (man-made). The most commonly known synthetic biodegradable polymers are polylactide (PLA), polyglycolide (PGA), polycaprolactone (PCL), polyhydroxyalkanoates (PHA), poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT)9.

PLA is considered the most promising candidate to replace current plastics. Unlike other synthetic biodegradable polymers and even conventional plastics, which are produced from petrochemicals, PLA is formed from sustainable resources (lactic acid in corn)9,10. However, if such biodegradable polymers were produced on an industrial scale, competition for land with food crops may become an issue. Good mechanical strength and low toxicity have already led to PLA’s successful implementation in packaging and biomedical applications9. Unfortunately, PLA has one important downside–its poor thermal properties limit its applicability at high temperatures (above 60 °C)11.

Despite PLA’s shortcomings, interest in this material has not waned due to its faster degradation time compared to current plastics (~12 months), which is believed to prevent its accumulation in our environment if implemented on an industrial scale12. However, specific micro-organisms present in composting plants at slightly elevated temperatures are required for this process; if not available the degradation time can be longer. The small molecules formed during biodegradation do not impact the environment in the same way as microplastics, but there are concerns that they will add to our greenhouse gas (GHG) emissions. That said, life cycle analysis has found that less net GHG generation occurs during PLA production compared to current petroleum-based plastics13.

Although biodegradable polymers and in particular PLA have been the focus of much research and patents over the last decade, their production has still not reached the level of PE, PET and PP due to cost10,11,14. Lactic acid is not as readily available compared to the starting materials used for current plastics (e.g. ethylene for PE). Additionally, lactic acid is converted to lactide before PLA can form and this extra-step adds to the final expenditure11,14.

Biodegradable polymers along with reducing, reusing and recycling could impact the accumulation of plastics in the environment, but further developments are still required before PLA or other biodegradable polymers can replace existing plastics10,15. Cost is not the only roadblock for such materials. Governments, society and industry have learnt from past mistakes and realise that production of new materials must consider their source and end of life together with the essential criteria of production scalability and material properties. In order to successfully substitute current plastics with biodegradable polymers, we not only need industry and academia to work together but also different disciplines (chemistry, engineering, materials science, biogeochemistry and climate science) to collaborate. Similar to the current plastics we use, this process will take time and key multi-disciplinary developments will be required. We hope Nature Communications provides the interdisciplinary, open-access platform to disseminate this research to all relevant stake-holders. We have begun the journey towards a new plastic future involving biodegradable polymers; we need to persevere together to reach the finish line in order to protect our environment.”

McKinsey.com

Rethinking the future of Plastics

“Plastics are the workhorse material of the modern economy. Their popularity has kept the industry growing for 50 years, with global production surging from 15 million metric tons in 1964 to 311 million metric tons in 2014. If business proceeds as usual, this number is projected to double to more than 600 million metric tons in the next 20 years. Yet functional benefits come at a price. Plastic packaging, especially, is the quintessential single-use product: it represents a quarter of the total volume of plastics, and around 95 percent of the value of plastic-packaging material (worth some $80 billion to $210 billion annually) is lost to the economy. And while its intended useful life is typically less than a year, the material lives on for centuries.

A new report by McKinsey, the Ellen MacArthur Foundation, and the World Economic Forum, The new plastics economy: Rethinking the future of plastics, finds that applying circular-economy principles to global plastic-packaging flows could reshape the material’s economy. In particular, it could drastically reduce negative externalities—valued conservatively by the United Nations Environment Programme at $40 billion1 —such as “leakage” into oceans as plastics escape established waste-collection systems. Today, almost a third of all plastic packaging leaks, with about 8 million metric tons annually polluting oceans.

Taking action
The new report explains that improvement efforts to date are highly fragmented and subscale. Urgent action is needed to move the industry into a positive spiral of value capture, stronger economics, and better environmental outcomes. The report explains how stakeholders evolve toward a “New Plastics Economy” with three main ambitions:

Create an effective after-use plastics economy by improving the economics and uptake of recycling, reuse, and controlled biodegradation for targeted applications.

Drastically reduce leakage of plastics into natural systems (in particular, the ocean) and other negative externalities.

Decouple plastics from fossil feedstocks by—in addition to reducing cycle losses and dematerializing—exploring and adopting renewably sourced feedstocks.

Even with today’s designs, technologies, and systems, these ambitions can be at least partially realized. For example, one recent study found that 53 percent of plastic packaging in Europe could today be recycled “ecoefficiently.” While the exact figure can be debated and depends on, among others, the oil price, the message is clear: there are pockets of opportunities to be captured already—and even where not entirely feasible today, the New Plastics Economy offers an attractive target state for the global value chain and governments to collaboratively innovate toward.

Redesigning materials, formats, and systems; developing new technologies; and evolving global value chains requires a new approach to achieve a systemic shift toward the New Plastics Economy. A coordinating vehicle is needed to drive this, with an initial focus on establishing a global plastics protocol and coordinating large-scale pilots and demonstration projects, mobilizing large-scale “moon shot” innovations (such as developing “bio-benign” materials and polymers with superior recyclability), developing insights and building an economic and scientific evidence base to better understand material flows and economics of various solutions, engaging policy makers and providing them with a tool kit to better assess policy options, and coordinating and driving communication across the various stakeholders acting along the global plastic-packaging value chain. We understand the work involved means this won’t happen overnight. But the time to start is now.

Download the full report on which this article is based, The new plastics economy: Rethinking the future of plastics (PDF–2.94MB).”

 

Related Posts

Store fresh cherries in a ziplock bag
How to Recycle a Zipper Bag

A useful blog on how to recycle a zipper bag - although these bags

Reducing waste over Christmas
Ways to reduce waste over Christmas

As we approach Christmas, it's good to keep thinking about our environment and how

Thinking responsibly about plastics
Thinking Responsibly About Plastic

Here is an interesting article from Henkel regarding thinking responsibly about plastics.  Please follow

Wash a zipper bag
How to Wash a Zipper Bag

Don't throw them out!  Wash them!  And here's how........... Follow the link to the original

Specialised Zipper bag
What are PP, OPP, and BOPP bags?

PP? OPP? BOPP?  What are we talking about??  Here's an informative article explaining the

Recycle
Plastics recycling figures 2017

2017 Plastics recycling figures - Plastixportal "Plastics recycling in South Africa has continued to grow Johannesburg,

Plastic alternatives
Plastic Alternatives

Plastics have become a very controversial issue - here are a few interesting articles

Unique Packaging 13
How are Plastic Bags made?

From Sciencing comes the following information on how plastic bags are made..........  Please follow

Sandwich bag
Re-use your zipper bags

Here are some great ideas from The Secret Yumiverse   Re-use your zipper bags Proficient Packaging is

Wet Phone
How to save a wet phone using a zipper bag

Did you know you can save a wet phone using a zipper bag?  You

Zipper bag uses
Unusual uses for zipper bags

Here are some more uses of zipper bags that you might not have thought

Zipper bags in space - specimen bags
Zipper Bags in Space!

Here is an interesting article regarding the use of Bitran Bags (Zipper bags) on

Store fresh cherries in a ziplock bag
What can I use my zipper bag for?

Zipper bags are a great way to store food but there are a myriad

Zipper bags
Is Food Packaging Sustainable?

Here is a good article from a few years ago looking at the problem

Zipper bags - ziploc bags
Benefits of Plastic Packaging

Here are a few more articles surrounding the plastic packaging debate.  Enjoy the read. ______________________________________ Top

Unique Packaging 13
Advantages of Plastic

There is a lot of debate about the disadvantage and advantages of plastic -

Recycle
Understanding the Plastic Recycling Codes

This is a very informative article from EarthEasy helping us understand the codes and

In defense of the plastic bag
In Defense of the Plastic Bag

An interesting article from Green Biz on this rather controversial subject.  Take a read

Zipper bags
You’ve been closing your ziploc bag all wrong!

Here's how to do it! Great tips from This Is Insider and Bustle ----------------------------------------- You've been

DIY Plastic Flowers
Plastic Recycling

Ever wondered about the process of recyling and what your recycled plastics can be

The future of single use plastics
The Future of Single Use Plastics

Here is something interesting on single use plastics.  Please guys, use and reuse the

Unique Packaging 13
Packaging Sells the Product

Here are a couple of great articles on why packaging is so important.  Enjoy

Chichen Zipper Bags
Why Branding is Important

Proficient Packaging can custom make flexible packaging to almost any size, almost any colour,  with

Zipper bags
How to Recycle Ziploc Bags

"Ziploc bags, aka sandwich bags or resealable plastic bags, are starting to be accepted

Growing seeds in a zipper bag
Growing Seeds in a Zipper Bag!

This is a great thing to do with your kids but also a great

Plastic Shade Balls
Shade Balls Help LA Save Water

The Daily Mail reported that 96 million plastic balls were released into the 175 acre

Cleaning up our oceans
Cleaning Up Our Oceans

OVER 5 TRILLION PIECES OF PLASTIC CURRENTLY LITTER THE OCEAN Trash accumulates in 5 ocean

Zipper bags
Are Zipper Bags Good For Keeping Water Out?

Can Zipper Bags For Cars Keep Flood Waters Out? According to the Insurance Council of

DIY Plastic Garden Markers - How to reuse plastic items
Plastic Flower Garden Markers

A few weeks ago we put our first seeds into the garden, just a

DIY Plastic Bag Skipping Rope - Reuse plastic bags
DIY Plastic Bag Jump Rope

"I really do make a huge effort to not get plastic bags, yet somehow

Plastic Bag Planters
How to Use Plastic Bags As Plant Containers

Planting in plastic bags is cheaper than purchasing plastic or clay pots for your

Grow lettuce in a plastic bag plant container
Growing Lettuce in a Reusable Grocery Bag

Some Lettuce Container Garden Basics It's easy to grow lettuce in plastic, reusable lunch bags,

Grow veggies in plastic bag plant containers
How to Plant Vegetables in Plastic Bag Containers

Plastic bags are an alternative to traditional planters when starting a container vegetable garden.

Ecobricks - reuse materials that you can't recycle
Ecobricking is a Deep Solution for Plastic

We envision a world where plastic is put to proper use, where we have

DIY Plastic Flowers
Ways to Upcycle Plastic Bags – Plastic Flowers

A plastic bag is cut into strips to create this plastic bag bow –

Recycle your plastic bags!
Ways To Reuse Plastic Bags

  A couple of weeks ago I had a friend visit me from California. As